พันธุวิศวกรรม

พันธุวิศวกรรม เป็นเทคนิคการสร้าง  DNA สายผสม หรือรีคอมบิแนนท์ DNA (recombinant DNA) ให้ได้สิ่งมีชีวิตที่มีลักษณะตามความต้องการ ซึ่งเทคนิคนี้ได้รับการพัฒนาอย่างรวดเร็ว ภายหลังจากการค้นพบเอนไซม์ในแบคทีเรียที่สามารถตัดสาย DNA บริเวณที่มีลำดับเบสจำเพาะซึ่งเรียกว่า
เอนไซม์ตัดจำเพาะ(restrictionenzyme) และสามารถเชื่อมสายDNAที่ถูกตัดแล้วมาต่อกันได้ด้วย เอนไซม์ DNA ไลเกส (DNA ligase enzyme)  ทำให้นักวิทยาศาสตร์สามารถออกแบบรูปแบบ DNA สายผสมได้ หากทราบตำแหน่งหรือลำดับเบสในตำแหน่งของเอนไซม์ตัดจำเพาะชนิดต่างๆ        
 เอนไซม์ตัดจำเพาะ
     เอนไซม์ตัดจำเพาะค้นพบเป็นครั้งแรกโดย  แฮมิลตัน  สมิธ (Hamilton  Smith) และคณะ แห่งสถาบันแพทย์ศาสตร์จอห์น ฮอปกินส์ สหรัฐอเมริกา ในปี พ.ศ.2513 และต่อมาได้มีการค้นพบเอนไซม์ที่มีลักษณะเช่นนี้  แต่ตัดจำเพาะในตำแหน่งลำดับเบสต่างออกไปจนถึงปัจจุบันนี้มีการ ค้นพบเอนไซม์ตัดจำเพาะมากกว่า 1,200 ชนิด ตัวอย่างในตาราง

18_1_1

(เอนไซม์ตัดจำเพาะ ลำดับเบสที่เป็นตำแหน่งที่ตัดและผลผลิตจากการตัดของเอนไซม์)

จากตารางจะเห็นว่าเอนไซม์ที่ตัดจำเพาะแต่ละชนิดมีบริเวณลำดับเบสจำเพาะ และจุดตัดจำเพาะที่แตกต่างกัน ตัวอย่างเช่น เอนไซม์ EcoRI จะมีลำดับเบสจำเพาะในการตัดจะมีจำนวน 6 คู่เบส ในขณะที่ HeaIII จะใช้เพียงสี่คู่เบส  จุดตัดจำเพาะที่เกิดขึ้น จะได้สาย DNA หลังจากถูกตัดแล้วใน 2 รูปแบบ เช่นในกรณีของการตัดด้วยเอนไซม์ Eco RI  จุดตัดจำเพาะจะอยู่ระหว่างเบส G และ A ซึ่งหลังจากการตัดจะทำให้ได้ปลายสายเดี่ยวทั้ง 2 ปลายที่รอยตัดของสาย DNA ซึ่งมีนิวคลีโอไทด์สายเดี่ยวยื่อนออกมา เรียกปลายสาย DNA ที่เกิดขึ้นเช่นนี้ว่า ปลายเหนียว (sticky end)” แต่ในกรณีของHeaIII จุดตัดจำเพาะอยู่ระหว่าง GและC (ดังตาราง)เมื่อตัดแล้วจะไม่เกิดปลายสาย DNA เป็นสายนิวคลีโอไทด์สายเดี่ยว เนื่องจากจุดตัดของสาย DNAทั้งสองเส้นอยู่ตรงกันพอดี ปลายรอยตัด DNA เช่นนี้  เรียกว่า ปลายทู่ ( bluntend ) 
    แม้ว่าตำแหน่งการตัดจำเพาะของเอนไซม์ตัดจำเพาะแต่ละชนิดจะแตกต่างกัน แต่หากนักเรียนสังเกต จะพบว่าลักษณะร่วมกัน คือ การเรียงลำดับเบส ในบริเวณดังกล่าวในทิศทางจาก 5’  ไปสู่ 3 จะเหมือนกันทั้งสองสายของสาย DNA  การเชื่อมต่อสาย DNA ด้วยเอนไซม์ DNA ไลเกส   จากการตัดสาย DNA  ของสิ่งมีชีวิตชนิดต่างชนิดกัน จะนำมาเชื่อมต่อกันได้ด้วยเอนไซม์ DNA ไลเกส  ซึ่งสามารถเร่งปฏิกิริยาการสร้างพันธะโคเวเลนซ์ระหว่างสองโมเลกุลของ DNA  ให้เชื่อมต่อกันได้จากการตัดและการเชื่อมต่อสาย DNA  นี้ทำให้เกิดสาย DNA  สายผสมเกิดขึ้น ดังภาพ

18_1_2

(การใช้เอนไซม์ตัดจำเพาะและเอนไซม์ดีเอ็นเอไลเกสในการสร้างโมเลกุลดีเอ็นเอสายผสม)

แบ่งออกเป็น  4  กลุ่มใหญ่
 1. การโคลนยีน
  DNA สายผสมที่ได้จากการตัดและต่อนี้ยังไม่สามารถทำงานได้ต้องมีวิธีการที่จะดำรง DNA สายผสมให้คงอยู่และเพิ่มจำนวนเพื่อใช้ในการศึกษาว่า สาย DNA เหล่านั้นควบคุมการสร้างโปรตีนชนิดใดและศึกษาว่า DNA  ยีนอะไรบ้าง  สิ่งที่จำเป็นคือ จะต้องเพิ่ม DNA ในบริเวณดังกล่าวให้มากพอที่จะศึกษาได้ การเพิ่ม DNA ที่เหมือนกันนั้นเรียกว่า การโคลนดีเอ็นเอ (DNA cloning)” หาก DNA บริเวณดังกล่าวเป็นยีนก็อาจเรียกว่า การโคลนยีน  (gene cloning)”
การโคลนยีนโดยอาศัยพลาสมิดของแบคทีเรีย
  การโคลนยีนวิธีหนึ่งที่เป็นที่นิยมกัน คือ อาศัยวิธีการเพิ่มจำนวนชุดของ DNA ในพลาสมิด (plasmid) ของแบคทีเรีย ซึ่งถือว่าเป็น DNA พาหะ (vector) สำหรับการโคลน DNA อย่างหนึ่งในแบคทีเรีย 1 เซลล์ อาจมีพลาสมิด 1 – 300 ชุด เมื่อนำเซลล์แบคทีเรียไปเลี้ยงเพื่อเพิ่มจำนวนชุดของพลาสมิดก็จะ เพิ่มขึ้นด้วย  ซึ่งส่วนของ DNA ที่ต้องการที่แทรกไว้ไนพลาสมิดก็จะเพิ่มขึ้นตามโดยปริยาย  หากส่วนของ DNA ที่แทรกไว้เป็นยีนก็อาจนำไปใช้ประโยชน์ต่อไป
18_2_1_1_

ภาพแสดงการโคลน DNA โดยอาศัยพลาสมิด

    การโคลนยีนในหลอดทดลองโดยเทคนิค พอลิเมอเรสเชนรีแอกชัน หรือ พีซีอาร์นปัจจุบันสามารถเพิ่มจำนวน DNA ในหลอดทดลองได้แล้ว  โดยใช้เครื่องมือที่เรียกว่า เทอร์มอไซเคลอร์ (thermocycler)” โดยเครื่องมือนี้สามารถควบคุมอุณหภูมิให้ปรับเปลี่ยนตามกำหนดเวลาที่ตั้งไว้ได้ ในการโคลนยีนโดยใช้เทคนิคพอลิเมอเรสเชนรีแอกชัน หรือ พีซีอาร์ (polymerase chain reaction ; PCR) นี้ต้องอาศัยเอนไซม์ DNA พอลิเมอเรส (DNA polymerase) ชนิดพิเศษที่ทนความร้อนหรือทนที่ที่มีอุณหภูมิสูงได้โดยเอนไซม์ชนิดพิเศษนี้จะแยกออกมาจากแบคทีเรียที่อาศัยอยู่บริเวณน้ำพุร้อนซึ่งจะทนสภาพ อุณหภูมิสูงได้
สิ่งที่ต้องใช้ในการทดลอง คือ
1.
DNA แม่แบบ (DNA template) ซึ่งเป็น DNA ที่ต้องการโคลนหรือเพิ่มจำนวน
2.
DNA ไพรเมอร์ (DNA primer) เป็น DNA สายสั้นๆ ที่ใช้เกาะกับ DNA ที่ต้องการโคลนเพื่อเป็นจุดเรื่มต้นในการสังเคราะห์สาย DNA
3. นิวคลีโอไทด์ทั้ง 4 ชนิด ประกอบด้วย
dATP (A) , dGTP (G) , dCTP (C) และ dTTP (T)
4. เอนไซม์
DNA พอลิเมอเรส ชนิดพิเศษ
ขั้นตอนของการทำงานของเครื่องเทอร์มอไซเคลอร์ โดยใช้เทคนิค PCR
1. ขั้นตอนแรกนี้เรียกว่า
“Denaturation” เพิ่มอุณหภูมิของเครื่องให้สูงขึ้นจนสาย DNA สายคู่ที่เป็นแม่แบบแยกออกจากกันเป็นสายเดี่ยว (ขั้นนี้อุณหภูมิประมาณ 90 ◦)
2. ขั้นตอนที่สองเรียกว่า
“Annealing” ลดอุณหภูมิลง (เหลือประมาณ 55 ◦) จะทำให้ DNA ไพรเมอร์จับกับ DNA แม่แบบสายเดี่ยวแต่ละสายในตำแหน่งที่เป็นจุดเริ่มต้นในการสังเคราะห์ DNA ด้วยพันธะไฮโดรเจน
3. ขั้นตอนที่สามเรียกว่า
“Extension” ปรับอุณหภูมิให้เหมาะสมต่อการทำงานของเอนไซม์ DNA พอลิเมอเรส เพื่อให้สร้างสาย DNA สายคู่เพิ่มขึ้น (ช่วงอุณหภูมิที่เหมาะสมต่อการทำงานของเอนไซม์ DNA พอลิเมอเรส คือ ประมาณ 72 ◦-75 ◦)
4. เริ่มกระบวนการในขั้นที่ 1 ใหม่จะได้
DNA สายคู่ 2 สาย เพิ่มเป็น 4 สายคู่ 8 สายคู่ และ 16 สายคู่  ตามลำดับไปเรื่อยๆ จนมากพอกับความต้องการ

18_2_2

 ภาพการสร้างสาย DNA โดย พอลิเมอเรส เชน รีแอกชัน (PCR)

จะเห็นได้ว่าเทคนิค PCR  นี้จะเพิ่มปริมาณ DNA ที่ต้องการที่มีปริมาณน้อยให้มากได้อย่างรวดเร็ว  แต่อย่างไรก็ตามเทคนิค PCR ยังมีข้อจำกัดอยู่ คือ ขั้นตอนการแสดงของยีน เช่น การสร้างโปรตีนและขั้นตอนการตรวจสอบความผิดพลาดของ DNA ที่สร้างขึ้น เนื่องจากเอนไซม์ที่ใช้ในปฏิกิริยานี้บางชนิดไม่มีการตรวจสอบลำดับนิวคลีโอไทด์ของ DNA เหมือนในระบบของเซลล์สิ่งมีชีวิต
     อย่างไรก็ดีเทคนิค PCR นี้ ได้นำมาใช้กับการเพิ่มปริมาณของ DNA ที่มีอยู่ในปริมาณน้อย เช่น ในคราบเลือด คราบอสุจิ เนื้อเยื่อบางชนิด เชื้อHIV  DNA ของเอ็มบริโอในครรภ์มารดาว่าผิดปกติหรือไม่  รวมทั้ง DNA จากซากของวอลลี แมมมอธ (Wolly mammoth) ด้วยเพื่อดูถึงวิวัฒนาการของสัตว์ชนิดนี้

2. การวิเคราะห์ DNA และการศึกษาจีโนม

  การวิเคราะห์ DNA  ในการวิเคราะห์ DNA (DNA analysis) นั้นจะมีการแยก DNA ขนาดต่างๆออกจากกันโดยอาศัยเทคนิคที่เรียกว่า  อิเล็กโทรโฟริซิส
(
gel electrophoresis โดยให้ DNA ที่ต้องการแยก (DNA ที่ขนาดต่างกัน) ออกจากกันวิ่งผ่านตัวกลางที่เป็นแผ่นวุ้น (ตัวกลางที่เป็นแผ่นวุ้น เช่น อะกาโรสเจล (agarose gel) หรือ พอลิอะคริลาไมด์ (polyacrylamide gel)) ที่อยู่ภายในสนามไฟฟ้า ตามปกติ DNA จะมีประจุเป็นลบ ดังนั้น DNA จะเคลื่อนเข้าหาขั้วบวกของสนามไฟฟ้า และ DNA ที่มีขนาดโมเลกุลใหญ่จะเคลื่อนที่ได้ช้ากว่า DNA ที่มีโมเลกุลขนาดเล็ก ทำให้ DNA ที่มีโมเลกุลขนาดเล็ก เคลื่อนที่ได้มากและอยู่ใกล้ขั้วบวก ส่วน DNA ที่มีโมเลกุลขนาดใหญ่จะเคลื่อนที่ไปได้น้อย จึงอยู่ใกล้ๆกับจุดเริ่มต้น ทำให้แยก DNA ขนาดต่างๆกันออกจากกันได้ 
scan0002 (1)

(เทคนิคเจลอิเล็กโทรโฟริซิส)

การศึกษาจีโนม
    นักวิจัยพบว่า จีโนมของสิ่งมีชีวิตชนิดเดียวกัน มีความแตกต่างกัน ซึ่งสามารถตรวจสอบความแตกต่างนั้นโดยอาศัยการตัดด้วยเอนไซม์ตัดจำเพาะ แล้วนำชิ้น DNA ไปแยกขนาดโดยวิธีการเจลอิเล็กโทรโฟริซิส และตรวจสอบโดยวิธี จะได้รูปแบบของแถบ DNA ที่แตกต่างกัน ดังนั้นรูปแบบของแถบDNA ที่ปรากฏขึ้นหลังจากตัดด้วยเอนไซม์ตัดจำเพาะจะสามารถเชื่อมโยงถึงจีโนม ของสิ่งมีชีวิตนั้น  เรียกความแตกต่างของรูปแบบของแถบ DNA ที่เกิดจากการตัดของเอนไซม์ตัดจำเพาะเหล่านี้ว่า เรสทริกชัน แฟรกเมนท์ เลจท์ พอลิมอร์ฟิซึม (restriction fragment length polymorphism:RELP) ซึ่งสามารถใช้เป็นเครื่องหมายทางพันธุกรรม (genetic marker)ได้
9_2
ตั้งแต่ปี พ.ศ. 2533 ได้มีการริเริ่มโครงการจีโนมมนุษย์ (Human Genome Project) เพื่อที่จะศึกษาลำดับนิวคลีโอไทด์ของมนุษย์ทั้งจีโนมโดยการหาลำดับนิวคลีโอไทด์ของออโทโซมจำนวน 22 โครโมโซม และโครโมโซม X และโครโมโซม Y ซึ่งเป็นโครงการนานาชาติ ในการดำเนินโครงการดังกล่าวมีการศึกษาแผนที่ยีน และแผนที่เครื่องหมายทางพันธุกรรมควบคู่ไปกับการหาลำดับนิวคลีโอไทด์ ซึ่งนำมาสู่การพัฒนาในเชิงเทคโนโลยี และการประยุกต์ใช้อย่างมากมายในปัจจุบัน

3. การประยุกต์ใช้เทคโนโลยีของ DNA

การประยุกต์ใช้ในเชิงการแพทย์และเภสัชกรรม

  1. การวินิจฉัยโรค     

ปัจจุบันมีการนำเอาเทคโนโลยีของ DNA มาใช้ในการวินิจฉัยโรคที่เกิดจากการติดเชื้อต่างๆ เช่น เชื้อไวรัส โดยการใช้เทคนิค PCR เพื่อตรวจสอบว่ามีจีโมนของไวรัสอยู่ในสิ่งมีชีวิตนั้นหรือไม่ ซึ่งเป็นเทคนิคที่มีความไวสูง สามารถตรวจพบได้โดยมีตัวอย่างเพียงเล็กน้อย เทคนิคนี้ได้นำมาใช้ในการตรวจวิเคราะห์การติดเชื้อ HIV เป็นต้น จากความรู้ทางพันธุศาสตร์ การค้นพบเครื่องหมายทางพันธุกรรมเชื่อมโยงกับแอลลีลที่ก่อโรค และลำดับนิวคลีโอไทด์ จึงสามารถนำไปใช้ในการตรวจวินิจฉัยโรคทาง พันธุกรรมก่อนจะมีอาการของโรคหรือเป็นเพียงพาหะ ซึ่งทำให้สามารถป้องกันการถ่ายทอดลักษณะดังกล่าวได้อย่างถูกต้อง

2. การบำบัดด้วยยีน
จากความรู้เกี่ยวกับความผิดปกติต่างๆในคนที่เกิดความบกพร่องของยีน หากสามารถใส่ยีนที่ปกติเข้าไปในเซลล์ร่างกาย หรือเนื้อเยื่อที่แสดงอาการผิดปกติแล้วทำให้ยีนนั้นแสดงออกเมื่อมีสารโปรตีนที่ปกติในบริเวณดังกล่าวจึงอาจเป็นแนวทางหนึ่งที่จะช่วยทำให้บำบัดอาการบกพร่องที่เกิดขึ้นได้

ในปัจจุบันเทคนิคหนึ่งที่ใช้ในการถ่ายยีนปกติ  เพื่อใช้ในการทำยีนบำบัด คือการใช้ไวรัสชนิดหนึ่งเป็นตัวนำยีนที่ต้องการถ่ายเข้าสู่เซลล์คน ซึ่งยีนของไวรัสที่เป็นอันตรายต่อคนจะถูกตัดทิ้ง แล้วใส่ยีนของคนที่ต้องการเข้าไปแทนที่ ไวรัสที่สร้างขึ้นใหม่นี้จะมียีนที่ต้องการแทรกอยู่ และจะมีความสามารถในการแทรกจีโนมของตัวมันเข้าสู่โครโมโซม คนได้ แต่ไม่สามารถจำลองตัวเองเองเพิ่มจำนวนได้ เนื่องจากยีนที่ทำหน้าที่ดังกล่าวที่มีอยู่เดิมในไวรัสได้ถูกตัดทิ้งไปแล้ว

pcs_rru_ac_th_npothersanti_agingimage009_jpg
การรักษาด้วยยีนบำบัด (gene therapy)
ในสหรัฐอเมริกา การรักษาด้วยยีนบำบัด (gene therapy) แต่ละกรณีจะต้องมีการตรวจสอบอย่างเคร่งครัดในทุกขั้นตอน เพื่อคำนึงถึงความปลอดภัยของผู้รับการรักษา  ตัวอย่างของโรคที่มีการรักษาด้วยการบำบัดยีนแล้ว เช่น Severe Combined Immunodefiency Disorder (SCID) ซึ่งโรคนี้เป็นโรคทางพันธุกรรม ผู้ที่เป็นโรคนี้ไม่สามารถสร้างภูมิคุ้มกันได้มักเสียชีวิตจากการติดเชื้อเพียงเล็กน้อย
maprojects_comcontentimg0409gene_therapy_jpg
โรคที่มีการรักษาด้วยการบำบัดยีน โรค Severe Combined Immunodefiency Disorder (SCID)
อย่างไรก็ดีการบำบัดด้วยยีนยังไม่ที่แพร่หลายและต้องใช้ด้วยความระมัดระวังอย่างยิ่ง เนื่องจากยังมีปัญหาทางด้านเทคนิคในการใช้  ตัวอย่างเช่น การควบคุมกิจกรรมของยีนที่ใส่ให้กับเซลล์ให้มีการผลิตผลิตภัณฑ์ที่ต้องการอย่างเหมาะสมได้อย่างไร การแทรกตัวของยีนเข้าสู่จีโนมของคนทำอย่างไรเมื่อแทรกแล้วจึงจะไม่ไปทำให้เกิดมิวเทชันในยีนอื่นที่ปกติอยู่แต่เดิม และไวรัสที่ใช้เป็นพาหะในการนำยีนเข้าสู่จีโนมคนนั้นสามารถบรรจุยีนได้อย่างจำกัด ไม่สามารถใส่ยีนที่มีขนาดใหญ่ ดังนั้นจึงต้องมีการศึกษาวิธีการหรือเทคนิคใดมีความเหมาะสมต่อการใช้ยีนบำบัดให้มากขึ้น
นอกจากนี้ในการทำยีนบำบัด ยังมีข้อโต้แย้งเชิงจริยธรรมเกิดขึ้นในสังคม ว่าหากเราทราบความผิดปกติของยีนต่างๆแล้ว เราควรบำบัดข้อบกพร่องในเซลล์ตั้งต้นที่จะสร้างเซลล์ไข่และตัวอสุจิหรือไม่หากอนุญาตให้มีการบำบัดในลักษณะดังกล่าว จะมีผลต่อวิวัฒนาการของมนุษย์หรือไม่ในอนาคต
3. การสร้างผลิตภัณฑ์ทางเภสัชกรรม
   การประยุกต์เทคโนโลยีเกี่ยวกับ DNA มาใช้ในเชิงเภสัชกรรมเป็นการประยุกต์ใช้ที่มีมาเป็นเวลาหลายสิบปี  โดยมีการสร้างผลิตภัณฑ์ทางเภสัชกรรมเป็นจำนวนมาก ซึ่งส่วนใหญ่เป็นการผลิตโปรตีน
การผลิตฮอร์โมนอินซูลิน เป็นตัวอย่างแรกที่ที่นำเทคนิคทาง DNA มาใช้ในการผลิตสารที่ใช้เชิงเภสัชกรรมเพื่อรักษาโรคเบาหวาน ผู้ป่วยโรคเบาหวานจำเป็นต้องได้รับอินซูลิน เพื่อควบคุมระดับน้ำตาลจากการตัดและต่อ DNA ให้มียีนที่สร้างอินซูลิน แล้วใส่เข้าไปในเซลล์แบคทีเรีย เพื่อให้เกิดการแสดงออกและสร้างพอลิเพปไทด์ที่ต้องการ จากนั้นจึงนำเซลล์ไปเพื่อเพิ่มจำนวนยีนที่สร้างสายพอลิเพปไทด์ดังกล่าวและผลิตอินซูลินที่ทำงานได้ ดังภาพ
Insulin
ภาพการผลิตฮอร์โมนอินซูลิน
การใช้พันธุวิศวกรรมเพื่อผลิตโปรตีน หรือฮอร์โมนที่บกพร่องในมนุษย์ นอกจากอินซูลินแล้วยังใช้พันธุวิศวกรรมในการผลิตโกรทฮอร์โมน เพื่อที่รักษาเด็กที่เจริญเติบโตเป็นคนแคระ เนื่องจากได้รับโกรทฮอร์โมนไม่เพียงพอ เป็นต้น

นอกจากการผลิตฮอร์โมนเพื่อใช้ทดแทนในคนที่มีความบกพร่องของฮอร์โมน ดังกล่าวข้างต้นแล้ว ยังมีการประยุกต์ใช้ในการผลิตยาเพื่อรักษาโรคบางชนิดอีกด้วย เช่น ใช้ในการผลิตยาที่จะยับยั้งไวรัส HIV โดยอาศัยเทคนิคทางพันธุวิศวกรรมในการสร้างโมเลกุลของโปรตีนที่จะป้องกันหรือเลียนแบบตัวรับที่ HIV ใช้ในการเข้าสู่เซลล์ ซึ่งตัวรับเหล่านี้จะอยู่บนเยื่อหุ้มเซลล์ของคน หากมีโมเลกุลที่เลียนแบบตัวรับเหล่านี้อยู่ในกระแสเลือด HIV จะเข้าเกาะกับโมเลกุลเหล่านี้แทนที่จะเกาะที่ตัวรับที่เซลล์เม็ดเลือดขาวแล้วเข้าทำลายเซลล์เม็ดเลือดขาว ตัวยาเหล่านี้จึงสามารถยับยั้งการทำงานของ HIV ได้
การใช้พันธุวิศวกรรมยังสามารถนำมาประยุกต์ใช้ในการผลิตวัคซีน แต่เดิมนั้นใช้วัคซีนเพื่อกระตุ้นภูมิคุ้มกันโรคที่เกิดจากไวรัส โดยใช้ไวรัสที่ไม่สามารถก่อโรค เพราะได้รับสารเคมีหรือวิธีทางกายภาพบางอย่าง หรือเป็นไวรัสในสายพันธุ์ที่ไม่นำโรคมาฉีดให้กับคน เพื่อกระตุ้นระบบภูมิคุ้มกัน แต่เมื่อการศึกษาในระดับโมเลกุลเกี่ยวกับไวรัสมีความชัดเจนขึ้น จนทราบว่าโปรตีนชนิดใดที่ผิวของไวรัสที่เป็นตัวกระตุ้นภูมิคุ้มกันในคนได้ ก็สามารถใช้วิธีทางพันธุวิศวกรรมตัดต่อเฉพาะยีนที่เป็นต้นแบบในการสร้างโปรตีนชนิดนั้น แล้วใช้โปรตีนดังกล่าวเป็นแอนติเจนในการกระตุ้นภูมิคุ้มกันแทนการใช้ไวรัสซึ่งทำให้มีความปลอดภัยยิ่งขึ้น

การประยุกต์ใช้ในเชิงนิติวิทยาศาสตร์

DNA เป็นสารพันธุกรรม  ซึ่ง DNA ของคนๆเดียวกันไม่ว่าจะมาจากเซลล์ส่วนใดของร่างกายจะมีรูปแบบที่เหมือนกัน  ดังนั้น DNA จึงเป็นเหมือนสิ่งที่บอกให้รู้ว่าคนๆนั้นเป็นใครและแตกต่างจากคนอื่นอย่างไร
โดยทั่วไปแล้วการที่จะบอกได้ว่าคนๆนั้นเป็นใครจะพิจารณาจากรูปร่างหน้าตา  วัน  เดือน  ปีเกิด  ตามข้อมูลในบัตรประชาชน หรือ หนังสือเดินทาง และถ้าจะให้ชัดเจนยิ่งขึ้นอาจดูจากรอยแผลเป็นหรือลายพิมพ์นิ้วมือ  อย่างไรก็ตามลักษณะอาจเปลี่ยนแปลงได้ตามอายุ หรือจากอุบัติเหตุ หรือจากสารเคมี แม้ว่าลายพิมพ์นิ้วมือจะไม่ สามารถบอกความสัมพันธ์ทางสายเลือดได้ว่าลายพิมพ์ นิ้วมือของลูกนั้นส่วนใดได้มาจากพ่อหรือแม่  แต่ลายพิมพ์ DNA สร้างมาจาก DNA ที่ได้รับการถ่ายทอดมาจากพ่อและแม่อย่างละครึ่งและเปลี่ยนแปลงไม่ได้  จึงมีลักษณะเฉพาะบุคคลซึ่งทำให้สามารถบอกความ    แตกต่างของบุคคลได้  ความแตกต่างที่มีความจำเพาะของแต่ละบุคคลนี้เองเราจึงนำมาใช้ประโยชน์ได้หลายด้าน เช่น การพิสูจน์ตัวบุคคล  การพิสูจน์ความสัมพันธ์ทางสายเลือด  การตรวจทางนิติเวชศาสตร์เพื่อหาผู้กระทำความผิด เป็นต้น  และจากความแตกต่างที่มีเฉพาะบุคคล จึงทำให้บุคคลมีรูปแบบของ DNA ที่แตกต่างกัน เมื่อใช้เทคนิคต่างๆ เช่น การใช้ RFLP marker ตรวจสอบ  จะเกิดเป็นแถบ DNA  รูปแบบของแถบ DNA  (DNA band) ที่เป็นความแตกต่างของขนาดชิ้น DNA ที่เป็นเอกลักษณ์ของแต่ละบุคคล เรียกว่า ลายพิมพ์ DNA (DNA fingerprint) เพราะโอกาสที่คนสองคน (ที่ไม่ใช่ฝาแฝดแท้) จะมีรูปแบบของลายพิมพ์ DNA เหมือนกันมีน้อยมาก

iles_wordpress_com200904dna-fingerprint_jpg_
ลายพิมพ์ DNA (DNA fingerprint)
นอกจากนี้ได้มีการใช้ลายพิมพ์ DNA เพื่อพิสูจน์ความเกี่ยวพันในคดีอาญาที่รุนแรง เช่น ฆาตกรรม  ทำร้ายร่างกาย  ซึ่งสามารถใช้เป็นหลักฐานสำคัญอย่างหนึ่งประกอบการพิจารณาคดีศาล  ตัวอย่างเช่น  ในคดีฆาตกรรมคดีหนึ่ง ได้นำคราบเลือดของฆาตกรที่พบในสถานที่เกิดเหตุและเลือดของผู้ต้องสงสัยจำนวน 7 คน  มาทำลายพิมพ์ DNA และนำมาเปรียบเทียบกัน เมื่อนำลายพิมพ์ DNA ของผู้ต้องสงสัยมาเปรียบเทียบกับลายพิมพ์ DNA ของคราบเลือดฆาตกรพบว่าเป็นดังนี้
scan000123
ภาพการเปรียบเทียบลายพิมพ์ DNA ของผู้ต้องสงสัยกับคราบเลือดฆาตกร
 จากภาพด้านบนที่มีการเปรียบเทียบลายพิมพ์ DNA ของผู้ต้องสงสัยทั้ง 7 คน  จะเห็นได้ว่า  ผู้ต้องสงสัยหมายเลข 4 มีลายพิมพ์ DNA ใกล้เคียงกับหลักฐานคราบเลือดในที่เกิดเหตุมากที่สุด จึงอาจสรุปได้ว่าเป็นฆาตกร
ปัจจุบันการตรวจลายพิมพ์ DNA จะใช้เทคนิค PCR เนื่องจากเป็นวิธีที่ง่าย  รวดเร็ว  ประหยัดค่าใช้จ่ายและใช้ตัวอย่างเลือดในปริมาณที่น้อยในประเทศไทย
การตรวจลายพิมพ์ DNA เริ่มโดยกลุ่มนักวิจัยจากหลายสถาบันร่วมกันทำงานอย่างต่อเนื่อง  โดยการตรวจพิสูจน์ความสัมพันธ์ทางสายเลือด  การหาตัวคนร้ายในคดีฆาตกรรม  การสืบหาทายาทที่แท้จริงในกองมรดก  นอกจากนี้ยังนำมาใช้ในการตรวจคนเข้าเมืองให้ถูกต้อง  กรณีการให้สัญชาติไทยแก่ชาวเขาและชนกลุ่มน้อย เพื่อสืบสาวว่า บรรพบุรุษเป็นชาวเขาที่ตั้งรกรากอยู่ในประเทศไทยหรือเป็นชนต่างด้าวที่อพยพเข้ามา ซึ่งมีผลต่อการพิสูจน์ชาติพันธุ์และการให้สิทธิในการอาศัยอยู่บนแผ่นดินไทยด้วย  นอกจากนี้ยังมีแนวโน้มว่าในอนาคตอาจมีการนำลายพิมพ์ DNA มาประยุกต์ใช้แทน การใช้ลายนิ้วมือ  เพื่อทำบัตรประชาชน  ทำให้สืบหาตัวบุคคลได้ถูกต้องรวดเร็ว  โดยเฉพาะอย่างยิ่งในกรณีสืบหาตัวบุคคลที่เสียชีวิตในสภาพที่บอกไม่ได้ว่าเป็น ใคร  เช่น  กรณีเครื่องบินตก หรือ ไฟไหม้
ปัจจุบันในประเทศไทยมีหน่วยงานที่มีห้องปฏิบัติการที่ตรวจลายพิมพ์ DNA เช่น  สถาบันนิติเวช  กองพิสูจน์หลักฐาน  สังกัดสำนักงานตำรวจแห่งชาติ  โรงพยาบาลต่างๆ เช่น โรงพยาบาลรามาธิบดี โรงพยาบาลศิริราช โรงพยาบาลเชียงใหม่ และสถาบันนิติวิทยาศาสตร์ กระทรวงยุติธรรม เป็นต้น

การประยุกต์ใช้ในเชิงการเกษตร

1. การทำฟาร์มสัตว์เพื่อสุขภาพของมนุษย์

ในการใช้เทคโนโลยี DNA เพื่อปรับปรุงพันธุ์สัตว์ในมีลักษณะที่ดีขึ้น เช่นเดียวกับเป้าหมายหนึ่งคือการในการปรับปรุงพันธุ์สัตว์ที่อาศัยการผสมพันธุ์ และคัดเลือกพันธุ์ดั้งเดิม แต่ด้วยเทคโนโลยี DNA ทำให้นักวิทยาศาสตร์สามารถหาได้ว่ายีนที่จะทำให้สัตว์มีลักษณะตามต้องการ เช่น หมูมีไขมันต่ำ วัวให้นมเร็วขึ้นและมากขึ้น เมื่อทราบว่ายีนควบคุมลักษณะนั้นคือยีนใดแล้วจึงย้ายยีนดังกล่าวเข้าสู่สัตว์ที่ต้องการ อีกรูปแบบหนึ่งของการทำฟาร์มในอนาคต คือ การสร้างฟาร์มสัตว์ที่เสมือนเป็น โรงงานผลิตยาเพื่อสกัดนำไปใช้ในการแพทย์ ตัวอย่างเช่น การสร้างแกะที่ได้รับการถ่ายยีนเพื่อให้สร้างโปรตีนที่มีอยู่ในเลือดของคน และให้แกะผลิตน้ำนมที่มีโปรตีนนี้ โปรตีนชนิดนี้จะยับยั้งเอนไซม์ที่ก่อให้เกิดการทำลายเซลล์ปอดในผู้ป่วยที่เป็นโรคซิสติกไฟโปรซิส (cystic fibrosis) และโรคระบบทางเดินหายใจที่เรื้อรังชนิดอื่นๆ
ในการสร้างสัตว์ดัดแปลงพันธุกรรม (transgenic  animal) จะเริ่มจากการแยกเซลล์ไข่ออกจากเพศเมียและฉีดยีนที่ต้องการเข้าไปในนิวเคลียสของเซลล์ไข่ (microinjection) ซึ่งจะมีเซลล์ไข่บางเซลล์ยอมให้ยีนดังกล่าวแทรกเข้าในจีโนมของนิวเคลียสและแสดงออกได้ จากนั้นทำการผสมพันธุ์ในหลอดทดลอง (in vitro fertilization) และถ่ายฝากเข้าในตัวแม่ผู้รับ เพื่อให้เจริญเป็นตัวใหม่ซึ่งจะมียีนที่ต้องการอยู่โดยไม่จำเป็นต้องมาจากสปีชีส์เดียวกัน

physics_comcharudoldnews0282pic2monkey3_jpg_
ภาพแอนดี (ANDi) ลิงดัดแปลงพันธุกรรมเรืองแสงตัวแรกของโลก
2. การสร้างพืชดัดแปลงพันธุกรรม(trensgenic plant)

การสร้างพืชดัดแปลงพันธุกรรมเพื่อให้มียีนของลักษณะตามที่ต้องการ เช่น การชะลอการสุกของผลไม้ หรือเพื่อยืดเวลาการเก็บรักษาผลผลิต มีความต้านทานโรคและแมลง มีความต้านทานต่อสารฆ่าแมลงมีคุณค่าด้านอาหารมากขึ้น เป็นต้น ในพืชสามารถทำได้ง่ายกว่าในสัตว์ เนื่องจากมีการศึกษาเทคโนโลยีในการเพาะเลี้ยงเนื้อเยื่อในหลอดทดลอง ซึ่งสามารถสร้างต้นพืชขึ้นใหม่จากเซลล์เนื้อเยื่อ หรือส่วนต่างๆ ของพืชได้เป็นเวลาหลายสิบปีมาแล้ว  ดังนั้นถ้าสามารถถ่ายยีนเข้าสู่เซลล์พืชได้ และพืชนั้นมีเทคโนโลยีการเพาะเลี้ยงเนื้อเยื่อพืชรองรับอยู่แล้ว ก็สามารถสร้างพืชดัดแปลงทางพันธุกรรมได้

ตัวอย่างการสร้างพืชดัดแปลงทางพันธุกรรม ได้แก่

พืชดัดแปลงทางพันธุกรรมที่มีความสามารถในการต้านทานแมลง
โดยการถ่ายยีนบีทีที่สร้างสารพิษจากแบคทีเรีย(Bacillua Thuringiensis;BT) สารพิษนี้สามารถทำลายตัวอ่อนของแมลงบางประเภทอย่างเฉพาะเจาะจง โดยไม่เป็นอันตรายต่อสิ่งมีชีวิตชนิดอื่น เมื่อนำยีนที่สร้างสารพิษไปใส่ในเซลล์ของพืช  เช่น ฝ้าย ข้าวโพด มันฝรั่ง ยาสูบ มะเขือเทศ พืชเหล่านี้สามารถผลิตสารทำลายตัวหนอนที่มากัดกิน ทำให้ผลผลิตของพืชเหล่านี้เพิ่มขึ้น ลดการใช้สารเคมีหรือไม่ต้องใช้เลย
พืชต้านทานต่อโรค
นักวิจัยไทยสามารถดัดแปลงพันธุกรรมของมะละกอให้ต้านทานต่อโรคใบด่างจุดวงแหวน ซึ่งเกิดจากไวรัสชนิดหนึ่ง โดยนำยีนที่สร้างโปรตีนเปลือกไวรัส (coat  protein  gene) ถ่ายฝากเข้าไปในเซลล์มะละกอ แล้วชักนำให้เป็นมะละกอสร้างโปรตีนดังกล่าว ทำให้สามารถต้านทานต่อเชื้อไวรัสได้ นอกจากนี้ยังมีการดัดแปลงพันธุกรรมของมันฝรั่ง ยาสูบ ให้มีความต้านทานต่อไวรัสที่มาทำลายได้
พืชดัดแปลงทางพันธุกรรมที่สามารถต้านสารปราบวัชพืช
เช่น  นำเอายีนที่ต้านทานสารปราบวัชพืชใส่เข้าไปในพืช  เช่น  ถั่วเหลือง ข้าวโพด ฝ้าย ทำให้สามารถต้านทานสารปราบวัชพืช ทำให้สารเคมีที่ปราบวัชพืชไม่มีผลต่อพืชดังกล่าวและสามารถใช้ประโยชน์จากดินและปุ๋ยอย่างมีประสิทธิภาพ การปลูกพืชหมุนเวียนยังทำได้ง่ายขึ้น ผลผลิตก็เพิ่มมากขึ้นด้วย
พืชดัดแปลงทางพันธุกรรมที่มีคุณค่าทางอาหารเพิ่มขึ้น
เช่น ในกรณีของข้าวที่เป็นธัญพืชที่เป็นอาหารหลักของโลก ได้มีนักวิทยาศาสตร์ นำยีนจากแดฟโฟดิลและยีนจากแบคทีเรีย Erwinia  bretaria ถ่ายฝากให้ข้าว  ทำให้ข้าวสร้างวิตามินเอในเมล็ดได้ เรียกว่า ข้าวสีทอง(golden rice)โดยหวังว่าการสร้างข้าวสีทอง จะมีส่วนช่วยในการลดภาวะการขาดวิตามินในประเทศที่ขาดแคลนอาหารในโลกได้
พืชดัดแปลงทางพันธุกรรมเพื่อให้ยืดอายุของผลผลิตได้ยาวนานขึ้น
โดยนำยีนที่มีผลต่อเอนไซม์ที่สังเคราะห์เอทิลีนใส่เข้าไปในผลไม้ เช่น มะเขือเทศ ทำให้มะเขือเทศสุกช้าลงเนื่องจากไม่มีการสร้างเอทิลีนลดความเน่าเสียของมะเขือเทศ สามารถเก็บรักษาได้นานขึ้นและขนส่งได้เป็นระยะทางไกลขึ้น
พืชดัดแปลงพันธุกรรมอื่นๆ
เช่น  ทำให้พืชต้านทานความแห้งแล้ง ต้านทานดินเค็ม  ดัดแปลงพืชให้แปลกและแตกต่างไปจากเดิมเพื่อให้เหมาะสมกับตลาดและความต้องการของมนุษย์มากขึ้น  แต่อย่างไรก็ตามพืชดัดแปลงพันธุกรรม (Genetically  Modified  Organism : GMOs) ถึงจะมีประโยชน์มากมายแต่ก็ยังมีข้อโต้แย้งทางสังคมเป็นอย่างมากว่าอาจจะไม่ปลอดภัยกับผู้บริโภคและอาจก่อให้เกิดปัญหาทางด้านพันธุ์พืช พันธุ์สัตว์ ความหลากหลายทางชีวภาพ การมิวเทชันและอาจเป็นอันตรายต่อสิ่งแวดล้อมในอนาคตได้

3. การปรับปรุงพันธุ์โดยอาศัยวิธีการของ molecolar  breeding
ด้วยเทคโนโลยี DNAนำมาสู่การสร้างแบคทีเรีย และแผนที่เครื่องหมายทางพันธุกรรมต่างๆ ทำให้นักปรับปรุงพันธุ์สามารถนำองค์ความรู้ดังกล่าวมาใช้ในการปรับปรุงพันธุ์ โดยอาศัยการคัดเลือกจากการตรวจหาจากเครื่องหมายทางพันธุกรรมระดับโมเลกุลทดแทนการคัดเลือกจากลักษณะฟีโนไทป์เพียงอย่างเดียว ซึ่งทำให้การปรับปรุงพันธุ์ต่างๆทำได้รวดเร็วขึ้นและมีความเป็นไปได้ที่จะได้พืชหรือสัตว์พันธุ์ใหม่ที่มีลักษณะต่างๆร่วมกันในเวลาที่เร็วขึ้น
ตัวอย่างการคัดเลือกสายพันธุ์ โดยอาศัยเครื่องหมายทางพันธุกรรมระดับโมเลกุลที่สามารถเห็นได้ชัดเจน เช่น การปรับปรุงพันธุ์ข้าวได้มีการศึกษาว่ายีนที่ควบคุมความทนเค็มนั้น ถูกควบคุมด้วยยีนหลายตำแหน่งและพบว่ายีนเหล่านั้นอยู่บนโครโมโซมแท่งต่างๆซึ่งมีลิงค์เกจกับเครื่องหมายทางพันธุกรรมในระดับโมเลกุล เมื่อทำการผสมพันธุ์เพื่อถ่ายทอดลักษณะความทนเค็ม ก็สามารถใช้เครื่องหมายทางพันธุกรรมเป็นตัวคัดเลือกต้นข้าวในรุ่นลูก

การใช้พันธุศาสตร์เพื่อศึกษาค้นคว้าหายีนและหน้าที่ของยีน

เนื่องจากเซลล์ของสิ่งมีชีวิตทุกเซลล์มีโปรตีน เป็นตัวดำเนินกิจกรรมต่างๆของชีวิต  ดังนั้นหากมีการยับยั้งการทำงานของโปรตีนหรือทำให้เกิดการทำงานผิดปกติของยีนดังกล่าว จะมีผลต่อลักษณะของสิ่งมีชีวิตนั้นๆได้ การเปลี่ยนแปลงที่เกิดขึ้นที่สามารถสังเกตได้ คือการเปลี่ยนแปลงของฟีโนไทป์นั้น ด้วยการศึกษาย้อนกลับไปว่าการเปลี่ยนแปลงดังกล่าวเกิดขึ้นที่โปรตีนใด ยีนใด ก็จะทราบถึงหน้าที่ของยีนอื่นๆนั้นได้ ซึ่งนั่นคือการชักนำให้เกิดมิวเทชันในสิ่งมีชีวิตหรือการสร้างมิวแทนท์ (mutant) ที่มีการเปลี่ยนแปลงของฟีโนไทป์บางประการแล้วอาศัยเทคนิคต่างๆทางชีววิทยาระดับโมเลกุล เพื่อศึกษาว่าเกิดการเปลี่ยนแปลงขึ้นที่ยีนใด
รศ.ดร.อภิชาติ  วรรณะวิจิตรและคณะ จากมหาวิทยาลัยเกษตรศาสตร์ ศึกษาลักษณะความหอมของข้าว พบว่ายีนที่ควบคุมลักษณะดังกล่าวเป็นยีนด้อย  จากการศึกษาแผนที่ยีนร่วมกับเครื่องหมายทางพันธุกรรมรวมทั้งการผสมพันธุ์  การใช้ข้อมูลชีวสารสนเทศ (bioinformation) ของจีโนมข้าว ทำให้สามารถระบุได้ว่ายีนความหอมในข้าวอยู่บนโครโมโซมแท่งที่ 8 และสามารถโคลนยีน Os  2AP ซึ่งควบคุมลักษณะความหอมของข้าวได้สำเร็จ โดยพบว่าโปรตีนที่สร้างจากยีน Os  2  AP จะช่วยยับยั้งสารที่ให้ความหอม ซึ่งถ้ายับยั้งการแสดงออกของยีนนี้ก็จะได้ข้าวที่มีความหอม
การศึกษาทางพันธุศาสตร์นั้นสามารถนำไปสู่การค้นพบยีนที่ทำหน้าที่ต่างๆ และหากค้นคว้าอย่างลึกซึ้งถึงกลไกลการทำงานต่างๆของยีนนั้นได้ ก็จะสามารถนำไปประยุกต์ใช้ในด้านต่างๆได้อย่างมีประสิทธิภาพและยั่งยืนในอนาคต

การประยุกต์ใช้เพื่อสิ่งแวดล้อม

นักเทคโนโลยีชีวภาพมีความพยายามที่จะใช้วิธีการทำพันธุวิศวกรรมเพื่อสร้างสายพันธุ์จุลินทรีย์ หรือพืชที่มีความสามารถในการย่อยสลายสารที่ไม่พึงประสงค์ที่ ปนเปื้อนในดิน น้ำหรือของเสียในโรงงานอุตสาหกรรมหรือเหมืองแร่ก่อนปล่อยลงสู่ธรรมชาติ อย่างไรก็ดีการใช้สิ่งมีชีวิตดัดแปลงทางพันธุกรรม สอดคล้องกับกฎหมายการควบคุมการใช้ GMOs ในแต่ละประเทศ

4.  ความปลอดภัยของเทคโนโลยีทาง DNA และมุมมองทางสังคมและจริยธรรม
เนื่องด้วยเทคโนโลยีของการสร้าง DNA สายผสมและการสร้างสิ่งมีชีวิตดัดแปลงพันธุกรรม เป็นเทคโนโลยีที่มีประสิทธิภาพและมีความกว้างขวางพร้อม ๆ กับสายพันธุ์สิ่งมีชีวิตใหม่เกิดขึ้นอย่างมากมายบนโลกอย่างที่ไม่เคยมีมาก่อน ทำให้สังคมเริ่มตระหนักและหวั่นเกรงผลเสียที่อาจเนื่องมาจากเทคโนโลยีนี้ เพราะจากบทเรียนที่มนุษย์ได้รับจากเทคโนโลยีต่าง ๆ ที่มนุษย์สร้างสรรค์ขึ้น มักมีผลกระทบอื่น ๆ ตามมาภายหลัง ไม่ว่าจะเป็นบทเรียนที่ได้จากการปฏิวัติอุตสาหกรรม มาจนถึงการปฏิวัติทางการเกษตรกรรมที่ส่งเสริมให้มีการปลูกพืชเชิงเดี่ยว เพราะการปฏิวัติดังกล่าว ส่งผลถึงการเปลี่ยนแปลงของสภาพแวดล้อมอย่างมากมายในเวลาต่อมา
ความหวั่นแกรงต่อความผิดพลาดของสิ่งมีชีวิตดัดแปลงพันธุกรรมที่เกิดขึ้น เริ่มจากความหวาดกลัวว่าจะเป็นแนวทางการเกิดเชื้อโรคสายพันธุ์ใหม่ ๆ ที่ดื้อยาปฏิชีวนะ เนื่องจากยีนต้านทานยาปฏิชีวนะถูกใช้เป็นเครื่องหมายทางพันธุกรรมสำหรับเทคนิคทางพันธุวิศวกรรมทั้งในจุลินทรีย์ พืชและสัตว์  ดังนั้น ในการทดลองวิจัยในห้องปฏิบัติการจึงต้องมีการควบคุม และมีระบบการกำจัดสิ่งมีชีวิตดัดแปลงพันธุกรรมทุกชนิด มิให้เล็ดลอดออกไปจากห้องปฏิบัติการวิจัยดังกล่าว ซึ่งเป็นจรรยาบรรณของนักวิจัยที่พึงปฏิบัติและศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ หรือไบโอเทค (BIOTEC) ได้ออกระเบียบของปฏิบัติงานวิจัยทางด้านนี้
ขอขอบคุณข้อมูลดีๆจาก    https://sites.google.com/site/biologyroom610/dna-technology
วีดิโอ   
อ้างอิงวีดิโอ   https://www.youtube.com/watch?v=OQjHgwu6MlM
คำถาม
 1.ในการโคลนยีน (gene  cloning)  โดยอาศัยสิ่งมีชีวิตนั้นสามารถทำได้ในสิ่งที่มีชีวิตใดบ้าง
ตอบ  ไวรัสและแบคทีเรีย
2.  การรักษาโรคเบาหวานโดยการตัดต่อยีนนิยมทำโดยใช้การต่อยีนผลิตอินซูลินเข้ากับส่วนใด
ตอบ  พลาสมิดจากเซลล์แบคทีเรีย

ใส่ความเห็น